
假设我们有一个最小连通图。这意味着删除任何边都会使图断开连接。该图有 n 个顶点,边在数组“edges”中给出。我们还获得了一个包含 n 个整数值的数组“vertexValues”。
现在,我们执行以下操作 -
我们必须找到最大值可以通过将值放在顶点上来实现。我们必须打印最大总值以及要写入顶点的值。
因此,如果输入类似于 n = 6,则 Edges = {{1, 2}, {2, 3} , {2, 4}, {4, 5}, {3, 6}}, vertexValues = {1, 2, 3, 4, 5, 6},则输出将为 15, 3 1 2 4 5 6,因为我们可以按照给定的方式 3 1 2 4 5 6 将值放在从 0 到 n – 1 的顶点上。
为了解决这个问题,我们将遵循以下步骤 -
N := 100
Define arrays seq and res of size N.
Define an array tp of size N.
ans := 0
Define a function dfs(), this will take p, q,
res[p] := seq[c]
if p is not equal to 0, then:
ans := ans + seq[c]
(decrease c by 1)
for each value x in tp[p], do:
if x is not equal to q, then:
dfs(x, p)
for initialize i := 0, when i + 1 < n, update (increase i by 1), do:
tmp := first value of edges[i]- 1
temp := second value of edges[i] - 1
insert temp at the end of tp[tmp]
insert tmp at the end of tp[temp]
for initialize i := 0, when i < n, update (increase i by 1), do:
seq[i] := vertexValues[i]
c := n - 1
sort the array seq
dfs(0, 0)
print(ans)
for initialize i := n - 1, when i >= 0, update (decrease i by 1), do:
print(res[i])
示例
让我们看看以下实现,以便更好地理解 -
#include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
#define N 100
int seq[N], res[N];
vector<int> tp[N];
int ans = 0, c;
void dfs(int p, int q) {
res[p] = seq[c];
if(p != 0)
ans += seq[c];
c--;
for(auto x : tp[p]) {
if(x != q)
dfs(x, p);
}
}
void solve(int n, vector<pair<int,int>> edges, int vertexValues[]){
for(int i = 0; i + 1 < n; i++) {
int tmp = edges[i].first - 1;
int temp = edges[i].second - 1;
tp[tmp].push_back(temp);
tp[temp].push_back(tmp);
}
for(int i = 0; i < n; i++)
seq[i] = vertexValues[i];
c = n - 1;
sort(seq, seq + n);
dfs(0, 0);
cout << ans << endl;
for(int i = n - 1; i >= 0; i--)
cout << res[i] << " ";
cout <
.........................................................